Paper from Proceeding of the National Conference “Science in Media 2012” Organized by YMCA University of Science and

Technology, Faridabad, Haryana (India) December 3™ -4™ 2012 Published by
IJMRS's International Journal of Engineering Sciences, ISSN (Online): 2277-9698
www.ijmrs.com

Performance improvement of bus suspension
using PID controller
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Abstract—This paper deals with the nonlinear system of Bus
Suspension system. This paper presents identification and
modelling of bus suspension system with the disturbance. When
the suspension system is designed, a 1/4 bus model (one of the
four wheels) is used to simplify the problem to a one dimensional
spring-damper system. The open loop behaviour of the system
on the basis of time and frequency response is analyzed. State
space modelling of the device is done to analyze its state space
behaviour. A good bus suspension system should have
satisfactory road holding ability, while still providing comfort
when riding over bumps and holes in the road. When bus
experiences any road disturbance such that pot holes, cracks,
and uneven pavement, the bus body should not have large
oscillations or oscillations should dissipate quickly. The system
should have short settling time and also have the ability to
absorb all the bumping. To achieve all these objectives closed
loop system is required. To design a controller, bus suspension
system is linearized. Despite continuous advancement in control
theory, Proportional Integral Derivative (PID) controller is the
most popular technique to control any process. In this paper,
Proportional- Integral — Derivative (PID) Controller is also
designed and tuned to give the smooth response for the bus
suspension system. System performances for the desired
parameters in closed loop are investigated. The simulation and
implementation of the controllers are done using
MATLAB/SIMULINK software.

Keywords— Bus suspension system, dynamic modelling, PID
control, state-space model, MATLAB /Simulink.

I. INTRODUCTION

Today, a struggling race is taking place among the
automotive industry to produce highly developed suspension
models. One of the performance requirements is advanced
suspension systems which prevent the road disturbances to
affect the passenger comfort while increasing riding
capabilities and performing a smooth drive. The main purpose
of this system is to increase the comfort of vehicle occupants
(passengers and drivers), to maintain the contact between the
tire and the road surface and to eliminate (minimize) dynamic
forces which act on the load bearing vehicle structure and road
surface along which the vehicle is moving. While the purpose
of the suspension system is to provide a smooth ride in the bus
and to help maintain control of the vehicle over rough terrain
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or in case of sudden stops, increasing ride comfort results in
larger suspension stroke and smaller damping in the wheel-
hop mode [1]. Numerous applications of different control
strategies have been proposed to overcome these suspension
problems. Many active control strategies such as Linear
Quadratic Gaussian (LQG) control, adaptive control, and
nonlinear control are developed and proposed so as to manage
the occurring problems [2-4]. Among the recent control
methods, PID control methods grab nowadays the attention of
many researchers. A PID has excellent capability in a
nonlinear system description and is particularly suitable for
the complex and uncertain systems.

II. SYSTEM IDENTIFICATION AND MODELLING

A mathematical model is an abstract model that uses
mathematical language to describe the behaviours of a system.
From the bus suspension system model, we can directly get
the dynamic equation by using the Newton’s law. Then, this
dynamic equation will be transfer into the Matlab to get the
transfer function using the built in function. In this project,
there are two outputs because of the mass of the system plus
the bus mass.

State-Space Model

The one dimensional spring-mass-damper system given in

Figure 1
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Fig. 1 Y Model of Bus Suspension system

The followings are constants and variables of the system
we are going to design:

* M= 2500 kg, (body mass)
* M, =320 kg, (suspension mass)
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* K; =80,000N/m, (spring constant of suspension system)

* K, =500,000 N/m, (spring constant of wheel and tire) gl 107 opemloopresponsetountsiepactaed force

* B; =350Ns/m, (damping constant of suspension system)

* B,=15,020 Ns/m, (damping constant of wheel and tire)

* U = force from the controller

To derive the dynamic equations of this system, we used
Newton’s second law of motion and the equations below are

presented. E
. r I m 14
MiXy 4By - Xo) + KXy - )o) = U ()
MoKy = Bi(Xi-XKo) +Ka (KL - Xo) # By W -Xo) = Ko(W-Xo)-U () T
Time (sec)

To transform the motion equations of the quarter-bus model
into a sjtate-space model, the .equation ), inCI_Uding variable Fig. 2 open-loop response to unit step actuated force
vector, input vector and the disturbance vector is formed after
some algebraic operations.

open-loop response to 0.1m step disturbance
0.1
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Since the distance X;-W is very difficult to measure, and the "o 0 20 m:(zec) “0 % 60
deformation of the tire (X,- W) is negligible, we will use the
distance X;-X, instead of X;-W as the output in our problem. Fig. 3 open-loop response to 0.1m step disturbance
The road disturbance (W) in this problem will be simulated by
a step input. This step could represent the bus coming out of a IV.  CLOSED LOOP RESPONSE
pothole. The schematic of the closed-loop system is the
following:

II1. OPEN LOOP ANALYSIS

We have used MATLAB to display how the original open-
loop system performs without any feedback control. We see
the response of unit step actuated force input and unit step
disturbance input.

From the graph of the open-loop response for a unit step
actuated force, we can see that the system is under-damped.
People sitting in the bus will feel very small amount of + I
oscillation and the steady-state error is about 0.013 mm.
Moreover, the bus takes very unacceptably long time for it to
reach the steady state. The solution to this problem is to add a
controller into the system's block diagram to improve the A. Controller: Proportional-Integral-Derivative Controller
perforrnance, (PID controller)

A proportional-integral-derivative  controller  (PID
controller) is a generic control loop feedback mechanism
widely used in industrial control systems - a PID is the most
commonly used feedback controller. A PID controller

H-¥g

Fig. 4 Closed-loop system with disturbance.
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calculates an "error" value as the difference between a
measured process variable and a desired set point. The
controller attempts to minimize the error by adjusting the
process control inputs. In the absence of knowledge of the
underlying process, PID controllers are the best controllers.

The PID controller is probably the most-used feedback
control design. PID is an acronym for Proportional-Integral-
Derivative, referring to the three terms operating on the error
signal to produce a control signal. If U(t) is the control signal
sent to the system, y(t) is the measured output and r(t) is the
desired output, and tracking error e(t) =r(t)-y(t), a PID
Controller has the general form

u(t)=Kpe(t)+K,e(t)dt + K, %e(t) 5

The desired closed loop dynamics is obtained by adjusting
the three parameters KP, KI and KD, often iteratively by
"tuning" and without specific knowledge of a plant model.

The PID controller calculation involves three separate
parameters, and is accordingly sometimes called three-term
control: the proportional, the integral and derivative values,
denoted P, I, and D. The proportional value determines the
reaction to the current error, the integral value determines the
reaction based on the sum of recent errors, and the derivative
value determines the reaction based on the rate at which the
error has been changing. The weighted sum of these three
actions is used to adjust the process via a control element such
as the position of a control valve or the power supply of a
heating element.
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Fig 5 Block Diagram of PID Controller

B. Tuning

Tuning a control loop is the adjustment of its control
parameters i.e. gain/proportional band, integral gain/reset,
derivative gain/rate to the optimum values for the desired
control response. Stability is a basic requirement, but beyond
that, different systems have different behavior, different
applications have different requirements, and some desiderata
conflict. Further, some processes have a degree of non-
linearity and so parameters that work well at full-load
conditions don't work when the process is starting up from no
load; this can be corrected by gain scheduling. PID controllers
often provide acceptable control even in the absence of tuning,
but performance can generally be improved by careful tuning,
and performance may be unacceptable with poor tuning. PID

tuning is a difficult problem, even though there are only three
parameters and in principle is simple to describe, because it
must satisfy complex criteria within the limitations of PID
control. There are accordingly various methods for loop
tuning, and more sophisticated techniques are the subject of
patents; this section describes some traditional manual
methods for loop tuning.

C. Tuning Methods

There are several methods for tuning a PID loop. The most
effective methods generally involve the development of some
form of process model, then choosing P, I, and D based on the
dynamic model parameters. Manual tuning methods can be
relatively inefficient, particularly if the loops have response
times on the order of minutes or longer. The choice of method
will depend largely on whether or not the loop can be taken
"offline" for tuning, and the response time of the system. If
the system can be taken offline, the best tuning method often
involves subjecting the system to a step change in input,
measuring the output as a function of time, and using this
response to determine the control parameters.

Manual Tuning

If the system must remain online, one tuning method is to
first set KI and KD values to zero. Increase the Kp until the
output of the loop oscillates, then the KP should be set to
approximately half of that value for a "quarter amplitude
decay" type response. Then increase KI until any offset is
correct in sufficient time for the process. However, too much
KI will cause instability. Finally, increase KD, if required,
until the loop is acceptably quick to reach its reference after a
load disturbance. However, too much KD will cause excessive
response and overshoot. A fast PID loop tuning usually
overshoots slightly to reach the set point more quickly;
however, some systems cannot accept overshoot, in which
case an over-damped closed-loop system is required, which
will require a KP setting significantly less than half that of the

KP setting causing oscillation.

Ziegler-Nichols Method

Another heuristic tuning method is formally known as the
Ziegler-Nichols method, introduced by John G. Ziegler and
Nathaniel B. Nichols. As in the method above, the KI and KD
gains are first set to zero. The P gain is increased until it
reaches the ultimate gain, Ku, at which the output of the loop
starts to oscillate. Ku and the oscillation period Pu are used to
set the gains as shown:
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TABLEI
EFFECTS OF INCREASING A PARAMETER INDEPENDENTLY

Cottrol Type K K Kp

P 3K, | =

3l 045Ky 12Ep/Ta

FID 060 Ky 1K/ Py KpPy B
Where,

K, = Ultimate Gain = 1/M
M= amplitude ratio of system’s response at crossover
frequency
P,= Ultimate period = 2n / ®co
mco= system’s crossover frequency.

The closed - loop Ziegler-Nichols method consist of
following steps:

1. With P-only closed loop control, increase the magnitude of
the proportional gain until the closed loop is in a continuous
oscillation. For slightly larger values of controller gain, the
closed loop system is unstable, while the slightly lower values
the system is stable.

2. The value of controller proportional gain that causes the
continuous oscillation is called the critical gain, K,. The peak-
to - peak period is called critical period P,

3. Depending upon controller chosen, P, PI, or PID, use the
value in tablel for tuning parameters, based on the critical
gain and period.

Response
we should see the response (X1-X2) to a step W

cloged-loop response to 0.9m high step with pid controller
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Fig 6 closed-loop response to step with PID controller

we can see that the system has larger damping than
required, but the settling time is very short. This response still
doesn't satisfy the overshoot requirement.

This can be rectified by manual tuning to find better
response, figure 7 where the maximum overshoot is
approximately 0.0048 m and the settling time is about 1.5
seconds.

qugéE-Loop Respaonze to 0.1-m High Step with High-Gain PID Controller
3 T T T T

Amplituce

Time (sec)

Fig 7 closed-loop response to step with high gain

V. CONCLUSIONS

In this study, a PID controller is designed and employed for
controlling an active suspension system of a ¥4 bus model. The
proposed model is aimed to developed and carry the response
of PID controller up to a better level by simply changing only

the gains of a PID controller using Manual Tuning method.
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